香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

opencv python 基于KNN的手写体识别的实例


时间:2022-01-11 10:29 作者:admin


OCR of Hand-written Data using kNN

OCR of Hand-written Digits

我们的目标是构建一个可以读取手写数字的应用程序, 为此,我们需要一些train_data和test_data. OpenCV附带一个images digits.png(在文件夹opencv\sources\samples\data\中),它有5000个手写数字(每个数字500个,每个数字是20x20图像).所以首先要将图片切割成5000个不同图片,每个数字变成一个单行400像素.前面的250个数字作为训练数据,后250个作为测试数据.

import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('digits.png')gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# Now we split the image to 5000 cells, each 20x20 sizecells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]# Make it into a Numpy array. It size will be (50,100,20,20)x = np.array(cells)# Now we prepare train_data and test_data.train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)# Create labels for train and test datak = np.arange(10)train_labels = np.repeat(k,250)[:,np.newaxis]test_labels = train_labels.copy()# Initiate kNN, train the data, then test it with test data for k=1knn = cv2.ml.KNearest_create()knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)ret,result,neighbours,dist = knn.findNearest(test,k=5)# Now we check the accuracy of classification# For that, compare the result with test_labels and check which are wrongmatches = result==test_labelscorrect = np.count_nonzero(matches)accuracy = correct*100.0/result.sizeprint( accuracy )

输出:91.76

进一步提高准确率的方法是增加训练数据,特别是错误的数据.每次训练时最好是保存训练数据,以便下次使用.

# save the datanp.savez('knn_data.npz',train=train, train_labels=train_labels)# Now load the datawith np.load('knn_data.npz') as data:  print( data.files )  train = data['train']  train_labels = data['train_labels']

OCR of English Alphabets

在opencv / samples / data /文件夹中附带一个数据文件letter-recognition.data.在每一行中,第一列是一个字母表,它是我们的标签. 接下来的16个数字是它的不同特征.

import numpy as npimport cv2import matplotlib.pyplot as plt# Load the data, converters convert the letter to a numberdata= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',',          converters= {0: lambda ch: ord(ch)-ord('A')})# split the data to two, 10000 each for train and testtrain, test = np.vsplit(data,2)# split trainData and testData to features and responsesresponses, trainData = np.hsplit(train,[1])labels, testData = np.hsplit(test,[1])# Initiate the kNN, classify, measure accuracy.knn = cv2.ml.KNearest_create()knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)ret, result, neighbours, dist = knn.findNearest(testData, k=5)correct = np.count_nonzero(result == labels)accuracy = correct*100.0/10000print( accuracy )

输出:93.06

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)