如何利用分析函数改写范围判断自关联查询详解
时间:2020-11-19 14:20 作者:admin610456
前言
最近碰到一个单条SQL运行效率不佳导致数据库整体运行负载较高的问题。
分析、定位数据库的主要负载是这条语句引起的过程相对简单,通过AWR报告就可以比较容易的完成定位,这里就不赘述了。
现在直接看一下这个导致性能问题的SQL语句,其对应的SQL REPORT统计如下:
Stat Name Statement Total Per Execution % Snap Total Elapsed Time (ms) 363,741 363,740.78 8 .42 CPU Time (ms) 362,770 362,770.00 8 .81 Executions 1 Buffer Gets 756 756.00 0.00 Disk Reads 0 0.00 0.00 Parse Calls 1 1.00 0.01 Rows 50,825 50,825.00 User I/O Wait Time (ms) 0 Cluster Wait Time (ms) 0 Application Wait Time (ms) 0 Concurrency Wait Time (ms) 0 Invalidations 0 Version Count 1 Sharable Mem(KB) 28
从SQL的性能指标上看,其单次执行需要6分钟左右,处理5万多条记录,逻辑度只有756,主要消耗时间在CPU上。而这里就存在疑点,逻辑读如此之低,而CPU时间花费又如此之高,那么这些CPU都消耗在哪里呢?当然这个问通过SQL的统计信息中是找不到答案的,我们下面关注SQL的执行计划:
Id Operation Name Rows Bytes TempSpc Cost (%CPU) Time 0 SELECT STATEMENT 1226 (100) 1 SORT ORDER BY 49379 3375K 3888K 1226 (2) 00:00:05 2 HASH JOIN ANTI 49379 3375K 2272K 401 (3) 00:00:02 3 TABLE ACCESS FULL T_NUM 49379 1687K 88 (4) 00:00:01 4 TABLE ACCESS FULL T_NUM 49379 1687K 88 (4) 00:00:01
从执行计划看,Oracle选择了HASH JOIN ANTI,JOIN的两张表都是T_NUM,且都采用了全表扫描,并未选择索引。仅靠执行计划也只等得到上面的结论,至于为什么不选择索引,以及为什么执行时间过长,还需要进一步的分析。
将原SQL进行简单脱密改写后, SQL文本类似如下:
SELECT BEGIN, END, ROWID, LENGTH(BEGIN)FROM T_NUM AWHERE NOT EXISTS (SELECT 1FROM T_NUM BWHERE B.BEGIN <= A.BEGINAND B.END >= A.ENDAND B.ROWID != A.ROWIDAND LENGTH(B.BEGIN) = LENGTH(A.BEGIN));
如果分析SQL语句,会发现这是一个自关联语句,在BEGIN字段长度相等的前提下,想要找到哪些不存在BEGIN比当前记录BEGIN小且END比当前记录END大的记录。
简单一点说,表中的记录表示的是由BEGIN开始到END截至的范围,那么当前想要获取的结果是找出哪些没有范围所包含的范围。需要注意的是,对于当前的SQL逻辑,如果存在两条范围完全相同的记录,那么最终这两条记录都会被舍弃。
业务的逻辑并不是特别复杂,但是要解决一条记录与其他记录进行比较,多半采用的方法是自关联,而在这个自关联中,既有大于等于又有小于等于,还有不等于,仅有的一个等于的关联条件,来自范围段BEGIN的长度的比较。
显而易见的是,如果是范围段本身的比较,其选择度一般还是不错的,但是如果只是比较其长度,那么无疑容易产生大量的重复,比如在这个例子中:
SQL> select length(begin), count(*) from t_num group by length(begin) order by 2 desc; LENGTH(BEGIN) COUNT(*)————- ———-12 2209611 901113 899914 818616 499 458 417 27
大量重复的数据出现在长度为11到14的范围上,在这种情况下,仅有的一个等值判断条件LENGTH(BEGIN)是非常低效的,这时一条记录根据这个等值条件会关联到近万条记录,设置关联到两万多条记录,显然大量的实践消耗在低效的连接过程中。
再来看一下具体的SQL语句,会发现几乎没有办法建立索引,因为LENGTH(BEGIN)的选择度非常查,而其他的条件都是不等查询,选择度也不会好,即使建立索引,强制执行选择索引,效率也不会好。
那么如果想要继续优化这个SQL,就只剩下一个办法,那就是SQL的改写。对于自关联查询而言,最佳的改写方法是利用分析函数,其强大的行级处理能力,可以在一次扫描过程中获得一条记录与其他记录的关系,从而消除了自关联的必要性。
SQL改写结果如下:
SELECT BEGIN, OLDEND END, LENGTH(BEGIN)FROM (SELECT BEGIN, OLDEND, END, LENGTH(BEGIN), COUNT(*) OVER(PARTITION BY LENGTH(BEGIN), BEGIN, OLDEND) CN,ROW_NUMBER() OVER(PARTITION BY LENGTH(BEGIN), END ORDER BY BEGIN) RNFROM(SELECT BEGIN, END OLDEND, MAX(END) OVER(PARTITION BY LENGTH(BEGIN) ORDER BY BEGIN, END DESC) ENDFROM T_NUM))WHERE RN = 1AND CN = 1;
简单的说,内层的分析函数MAX用来根据BEGIN从小到大,END从大到小的条件,确定每个范围对应的最大的END的值。而外层的两个分析函数,COUNT用来去掉完全重复的记录,而ROW_NUMBER用来获取范围最大的记录(也就是没有被其他记录的范围所涵盖)。
改写后,这个SQL避免对自关联,也就不存在关联条件重复值过高的性能隐患了。在模拟环境中,性能对比如下:
SQL> SELECT BEGIN, END, ROWID, LENGTH(BEGIN)2 FROM T_NUM A3 WHERE NOT EXISTS (4 SELECT 15 FROM T_NUM B6 WHERE B.BEGIN <= A.BEGIN7 AND B.END >= A.END8 AND B.ROWID != A.ROWID9 AND LENGTH(B.BEGIN) = LENGTH(A.BEGIN))10 ; 48344 rows selected. Elapsed: 00:00:57.68 Execution Plan———————————————————-Plan hash value: 2540751655 ————————————————————————————| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |————————————————————————————| 0 | SELECT STATEMENT | | 48454 | 1703K| | 275 (1)| 00:00:04 ||* 1 | HASH JOIN ANTI | | 48454 | 1703K| 1424K| 275 (1)| 00:00:04 || 2 | TABLE ACCESS FULL| T_NUM | 48454 | 851K| | 68 (0)| 00:00:01 || 3 | TABLE ACCESS FULL| T_NUM | 48454 | 851K| | 68 (0)| 00:00:01 |———————————————————————————— Predicate Information (identified by operation id):————————————————— 1 – access(LENGTH(TO_CHAR(“B”.”BEGIN”))=LENGTH(TO_CHAR(“A”.”BEGIN”)))filter(“B”.”BEGIN”<=”A”.”BEGIN” AND “B”.”END”>=”A”.”END” AND“B”.ROWID<>”A”.ROWID) Statistics———————————————————-0 recursive calls0 db block gets404 consistent gets0 physical reads0 redo size2315794 bytes sent via SQL*Net to client35966 bytes received via SQL*Net from client3224 SQL*Net roundtrips to/from client0 sorts (memory)0 sorts (disk)48344 rows processed SQL> SELECT BEGIN, OLDEND END, LENGTH(BEGIN)2 FROM (3 SELECT BEGIN, OLDEND, END, LENGTH(BEGIN), COUNT(*) OVER(PARTITION BY LENGTH(BEGIN), BEGIN, OLDEND) CN,4 ROW_NUMBER() OVER(PARTITION BY LENGTH(BEGIN), END ORDER BY BEGIN) RN5 FROM6 (7 SELECT BEGIN, END OLDEND, MAX(END) OVER(PARTITION BY LENGTH(BEGIN) ORDER BY BEGIN, END DESC) END8 FROM T_NUM9 )10 )11 WHERE RN = 112 AND CN = 1; 48344 rows selected. Elapsed: 00:00:00.72 Execution Plan———————————————————-Plan hash value: 1546715670 ——————————————————————————————| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |——————————————————————————————| 0 | SELECT STATEMENT | | 48454 | 2460K| | 800 (1)| 00:00:10 ||* 1 | VIEW | | 48454 | 2460K| | 800 (1)| 00:00:10 ||* 2 | WINDOW SORT PUSHED RANK| | 48454 | 1845K| 2480K| 800 (1)| 00:00:10 || 3 | WINDOW BUFFER | | 48454 | 1845K| | 800 (1)| 00:00:10 || 4 | VIEW | | 48454 | 1845K| | 311 (1)| 00:00:04 || 5 | WINDOW SORT | | 48454 | 662K| 1152K| 311 (1)| 00:00:04 || 6 | TABLE ACCESS FULL | T_NUM | 48454 | 662K| | 68 (0)| 00:00:01 |—————————————————————————————— Predicate Information (identified by operation id):————————————————— 1 – filter(“RN”=1 AND “CN”=1)2 – filter(ROW_NUMBER() OVER ( PARTITION BY LENGTH(TO_CHAR(“BEGIN”)),”END”ORDER BY “BEGIN”)<=1) Statistics———————————————————-0 recursive calls0 db block gets202 consistent gets0 physical reads0 redo size1493879 bytes sent via SQL*Net to client35966 bytes received via SQL*Net from client3224 SQL*Net roundtrips to/from client3 sorts (memory)0 sorts (disk)48344 rows processed
原SQL运行时间接近1分钟,而改写后的SQL语句只需要0.72秒,执行时间变为原本的1/80,逻辑读减少一半。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。
(责任编辑:admin)