香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

Python时间序列处理之ARIMA模型的使用讲解


时间:2022-04-02 10:27 作者:admin610456


ARIMA模型

ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q)。

ARIMA的适应情况

ARIMA模型相对来说比较简单易用。在应用ARIMA模型时,要保证以下几点:

时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定。 非线性关系处理不好,只能处理线性关系

判断时序数据稳定

基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值。

ARIMA数学表达

ARIMA(p,d,q),其中p是数据本身的滞后数,是AR模型即自回归模型中的参数。d是时间序列数据需要几次差分才能得到稳定的数据。q是预测误差的滞后数,是MA模型即滑动平均模型中的参数。

a) p参数与AR模型

AR模型描述的是当前值与历史值之间的关系,滞后p阶的AR模型可以表示为:

其中u是常数,et代表误差。

b) q参数与MA模型

MA模型描述的是当前值与自回归部分的误差累计的关系,滞后q阶的MA模型可以表示为:

其中u是常数,et代表误差。

c) d参数与差分

一阶差分:

二阶差分:

d) ARIMA = AR+MA

ARIMA模型使用步骤

获取时间序列数据 观测数据是否为平稳的,否则进行差分,化为平稳的时序数据,确定d 通过观察自相关系数ACF与偏自相关系数PACF确定q和p

得到p,d,q后使用ARIMA(p,d,q)进行训练预测

python/' target='_blank'>python调用ARIMA

#差分处理diff_series = diff_series.diff(1)#一阶diff_series2 = diff_series.diff(1)#二阶#ACF与PACF#从scipy导入包from scipy import statsimport statsmodels.api as sm#画出acf和pacfsm.graphics.tsa.plot_acf(diff_series)sm.graphics.tsa.plot_pacf(diff_series)#arima模型from statsmodels.tsa.arima_model import ARIMAmodel = ARIMA(train_data,order=(p,d,q),freq='')#freq是频率,根据数据填写arima = model.fit()#训练print(arima)pred = arima.predict(start='',end='')#预测

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。如果你想了解更多相关内容请查看下面相关链接

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)