香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

Python常见的pandas用法demo示例


时间:2022-04-02 10:23 作者:admin


本文实例总结了python/' target='_blank'>python常见的pandas用法。分享给大家供大家参考,具体如下:

import numpy as npimport pandas as pd
s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列。 序列就是一列内容,每一行有一个index值print(s)print(s.index)

0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)

dates = pd.date_range('20180101', periods=6)print(dates)

DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
'2018-01-05', '2018-01-06'],
dtype='datetime64[ns]', freq='D')

df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定义DataFrame,可以看作一个有index和colunms的矩阵print(df)

0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11

df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩阵print(df)

a b c d
2018-01-01 0.300675 1.769383 1.244406 -1.058294
2018-01-02 0.832666 2.216755 0.178716 -0.156828
2018-01-03 1.314190 -0.866199 0.836150 1.001026
2018-01-04 -1.671724 1.147406 -0.148676 -0.272555
2018-01-05 1.146664 2.022861 -1.833995 -0.627568
2018-01-06 -0.192242 1.517676 0.756707 0.058869

df = pd.DataFrame({'A':1.0,          'B':pd.Timestamp('20180101'),          'C':pd.Series(1, index=list(range(4)), dtype='float32'),          'D':np.array([3] * 4, dtype='int32'),          'E':pd.Categorical(['test', 'train', 'test', 'train']),          'F':'foo'}) #按照给出的逐列定义dfprint(df)print(df.dtypes)

A B C D E F
0 1.0 2018-01-01 1.0 3 test foo
1 1.0 2018-01-01 1.0 3 train foo
2 1.0 2018-01-01 1.0 3 test foo
3 1.0 2018-01-01 1.0 3 train foo
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

#df的行、列、值print(df.index)print(df.columns)print(df.values)

Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]

print(df.describe()) #统计print(df.T) #转置

A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
0 1 2 \
A 1 1 1
B 2018-01-01 00:00:00 2018-01-01 00:00:00 2018-01-01 00:00:00
C 1 1 1
D 3 3 3
E test train test
F foo foo foo
3
A 1
B 2018-01-01 00:00:00
C 1
D 3
E train
F foo

#df排序print(df.sort_index(axis=1, ascending=False)) #根据索引值对各行进行排序(相当于重新排列各列的位置)print(df.sort_values(by='E')) #根据内容值对各列进行排序

F E D C B A
0 foo test 3 1.0 2018-01-01 1.0
1 foo train 3 1.0 2018-01-01 1.0
2 foo test 3 1.0 2018-01-01 1.0
3 foo train 3 1.0 2018-01-01 1.0
A B C D E F
0 1.0 2018-01-01 1.0 3 test foo
2 1.0 2018-01-01 1.0 3 test foo
1 1.0 2018-01-01 1.0 3 train foo
3 1.0 2018-01-01 1.0 3 train foo

indexes = pd.date_range('20180101', periods=6)df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D'])print(df3)print()#选择columnprint(df3['A'])print()print(df3.A)

A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
2018-01-01 0
2018-01-02 4
2018-01-03 8
2018-01-04 12
2018-01-05 16
2018-01-06 20
Freq: D, Name: A, dtype: int32
2018-01-01 0
2018-01-02 4
2018-01-03 8
2018-01-04 12
2018-01-05 16
2018-01-06 20
Freq: D, Name: A, dtype: int32
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11

#选择行, 类似limit语句print(df3[0:0])print()print(df3[0:3])print()print(df3['20180103':'20180105'])

Empty DataFrame
Columns: [A, B, C, D]
Index: []
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
A B C D
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19

print(df3.loc['20180102']) #返回指定行构成的序列

A 4
B 5
C 6
D 7
Name: 2018-01-02 00:00:00, dtype: int32

print(df3.loc['20180103', ['A','C']]) #列筛选print()print(df3.loc['20180103':'20180105', ['A','C']]) #子df,类似select A, C from df limit ...print()print(df3.loc[:, ['A', 'B']])

A 8
C 10
Name: 2018-01-03 00:00:00, dtype: int32
A C
2018-01-03 8 10
2018-01-04 12 14
2018-01-05 16 18
A B
2018-01-01 0 1
2018-01-02 4 5
2018-01-03 8 9
2018-01-04 12 13
2018-01-05 16 17
2018-01-06 20 21

print(df3);print()print(df3.iloc[1]);print()print(df3.iloc[1,1]);print()print(df3.iloc[:,1]);print()print(df3.iloc[0:3,1:3]);print()print(df3.iloc[[1,3,5],[0,2]]) #行可以不连续,limit做不到

A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A 4
B 5
C 6
D 7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01 1
2018-01-02 5
2018-01-03 9
2018-01-04 13
2018-01-05 17
2018-01-06 21
Freq: D, Name: B, dtype: int32
B C
2018-01-01 1 2
2018-01-02 5 6
2018-01-03 9 10
A C
2018-01-02 4 6
2018-01-04 12 14
2018-01-06 20 22

# print(df3.ix[:3, ['A', 'C']])\print(df3);print()print(df3[df3.A >= 8]) #根据值进行条件过滤,类似where A >= 8条件语句

A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23

indexes1 = pd.date_range('20180101', periods=6)df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])print(df4);print()#给某个元素赋值df4.A[1] = 1111df4.B['20180103'] = 2222df4.iloc[3, 2] = 3333df4.loc['20180105', 'D'] = 4444print(df4);print()#范围赋值df4.B[df4.A < 10] = -1print(df4);print()df4[df4.A < 10] = 0print(df4);print()

A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 2222 10 11
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 -1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 -1 10 11
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23
A B C D
2018-01-01 0 0 0 0
2018-01-02 1111 5 6 7
2018-01-03 0 0 0 0
2018-01-04 12 13 3333 15
2018-01-05 16 17 18 4444
2018-01-06 20 21 22 23

indexes1 = pd.date_range('20180101', periods=6)df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])print(df4);print()#添加一列df4['E'] = np.NaNprint(df4);print()#由于index没对齐,原df没有的行默认为NaN,类型为float64,多出的行丢弃df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6))print(df4);print()print(df4.dtypes)

A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
A B C D E
2018-01-01 0 1 2 3 NaN
2018-01-02 4 5 6 7 NaN
2018-01-03 8 9 10 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 16 17 18 19 NaN
2018-01-06 20 21 22 23 NaN
A B C D E F
2018-01-01 0 1 2 3 NaN NaN
2018-01-02 4 5 6 7 NaN 1.0
2018-01-03 8 9 10 11 NaN 2.0
2018-01-04 12 13 14 15 NaN 3.0
2018-01-05 16 17 18 19 NaN 4.0
2018-01-06 20 21 22 23 NaN 5.0
A int32
B int32
C int32
D int32
E float64
F float64
dtype: object

df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D'])df_t.iloc[0, 1] = np.NaNdf_t.iloc[1, 2] = np.NaNdf = df_t.copy()print(df);print()print(df.dropna(axis=0, how='any'));print()df = df_t.copy()print(df.dropna(axis=1, how='any'));print()df = df_t.copy()df.C = np.NaNprint(df);print()print(df.dropna(axis=1, how='all'));print()

A B C D
1 0 NaN 2.0 3
2 4 5.0 NaN 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A B C D
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A D
1 0 3
2 4 7
3 8 11
4 12 15
5 16 19
6 20 23
A B C D
1 0 NaN NaN 3
2 4 5.0 NaN 7
3 8 9.0 NaN 11
4 12 13.0 NaN 15
5 16 17.0 NaN 19
6 20 21.0 NaN 23
A B D
1 0 NaN 3
2 4 5.0 7
3 8 9.0 11
4 12 13.0 15
5 16 17.0 19
6 20 21.0 23

df = df_t.copy()print(df);print()print(df.isna());print()print(df.isnull().any());print() #isnull是isna别名,功能一样print(df.isnull().any(axis=1));print()print(np.any(df.isna() == True));print()print(df.fillna(value=0)) #将NaN赋值

A B C D
1 0 NaN 2.0 3
2 4 5.0 NaN 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23
A B C D
1 False True False False
2 False False True False
3 False False False False
4 False False False False
5 False False False False
6 False False False False
A False
B True
C True
D False
dtype: bool
1 True
2 True
3 False
4 False
5 False
6 False
dtype: bool
True
A B C D
1 0 0.0 2.0 3
2 4 5.0 0.0 7
3 8 9.0 10.0 11
4 12 13.0 14.0 15
5 16 17.0 18.0 19
6 20 21.0 22.0 23

data = pd.read_csv('D:/Pythonwp/test/student.csv')print(data)data.to_pickle('D:/pythonwp/test/student.pickle')

id name age gender
0 1 牛帅 23 Male
1 2 gyb 89 Male
2 3 xxs 27 Male
3 4 hey 24 Female
4 5 奥莱利赫本 66 Female
5 6 Jackson 61 Male
6 7 牛帅 23 Male

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D'])df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D'])print(df0); print()print(df1); print()print(df2); print()res = pd.concat([df0, df1, df2], axis = 0)print(res); print()res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True)print(res)

A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
A B C D
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
A B C D
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
A B C D
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D'])res = pd.concat([df0, df1], ignore_index=True)print(res);print()res = pd.concat([df0, df1], join='outer', ignore_index=True)print(res);print()res = pd.concat([df0, df1], join='inner',ignore_index=True)print(res);print()

A B C D E F
0 0.0 0.0 0.0 0.0 NaN NaN
1 0.0 0.0 0.0 0.0 NaN NaN
2 0.0 0.0 0.0 0.0 NaN NaN
3 NaN NaN 1.0 1.0 1.0 1.0
4 NaN NaN 1.0 1.0 1.0 1.0
5 NaN NaN 1.0 1.0 1.0 1.0
A B C D E F
0 0.0 0.0 0.0 0.0 NaN NaN
1 0.0 0.0 0.0 0.0 NaN NaN
2 0.0 0.0 0.0 0.0 NaN NaN
3 NaN NaN 1.0 1.0 1.0 1.0
4 NaN NaN 1.0 1.0 1.0 1.0
5 NaN NaN 1.0 1.0 1.0 1.0
C D
0 0.0 0.0
1 0.0 0.0
2 0.0 0.0
3 1.0 1.0
4 1.0 1.0
5 1.0 1.0

#横向合并df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])print(df0);print()print(df1);print()res = pd.concat([df0, df1], axis=1)print(res);print()res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True)print(res);print()res = pd.concat([df0, df1], axis=1, join_axes=[df0.index])print(res);print()

A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
A B C D
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D A B C D
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
0 1 2 3 4 5 6 7
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
A B C D A B C D
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])print(df0);print()print(df1);print()res = df0.append([df1, df1], ignore_index=False)print(res);print()s = pd.Series([1,2,3,4], index=['A','B','C','E'])print(df0.append(s, ignore_index=True))

A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
A B C D
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
A B C D E
0 0.0 0.0 0.0 0.0 NaN
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 1.0 2.0 3.0 NaN 4.0

df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'],          'A':['A0', 'A1', 'A2'],          'B':['B0', 'B1', 'B2']})df2 = pd.DataFrame({'key':['K3', 'K1', 'K2'],          'C':['C3', 'C1', 'C2'],          'D':['D3', 'D1', 'D2']})print(df1); print()print(df2); print()res = pd.merge(df1, df2, on='key')print(res); print()res = pd.merge(df1, df2, on='key', how='outer')print(res); print()res = pd.merge(df1, df2, on='key', how='left')print(res); print()res = pd.merge(df1, df2, on='key', how='right')print(res); print()

A B key
0 A0 B0 K0
1 A1 B1 K1
2 A2 B2 K2
C D key
0 C3 D3 K3
1 C1 D1 K1
2 C2 D2 K2
A B key C D
0 A1 B1 K1 C1 D1
1 A2 B2 K2 C2 D2
A B key C D
0 A0 B0 K0 NaN NaN
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 NaN NaN K3 C3 D3
A B key C D
0 A0 B0 K0 NaN NaN
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
A B key C D
0 A1 B1 K1 C1 D1
1 A2 B2 K2 C2 D2
2 NaN NaN K3 C3 D3

df1 = pd.DataFrame({'key1':['K0', 'K0', 'K1'],          'key2':['K0', 'K1', 'K1'],          'A':['A0', 'A1', 'A2'],          'B':['B0', 'B1', 'B2']})df2 = pd.DataFrame({'key1':['K0', 'K0', 'K1', 'K2'],          'key2':['K0', 'K0', 'K1', 'K2'],          'C':['C3', 'C1', 'C2', 'C4'],          'D':['D3', 'D1', 'D2', 'D4']})print(df1); print()print(df2); print()res = pd.merge(df1, df2, on=['key1','key2'])print(res); print()res = pd.merge(df1, df2, on=['key1','key2'], how='outer', indicator='indi')print(res); print()

A B key1 key2
0 A0 B0 K0 K0
1 A1 B1 K0 K1
2 A2 B2 K1 K1
C D key1 key2
0 C3 D3 K0 K0
1 C1 D1 K0 K0
2 C2 D2 K1 K1
3 C4 D4 K2 K2
A B key1 key2 C D
0 A0 B0 K0 K0 C3 D3
1 A0 B0 K0 K0 C1 D1
2 A2 B2 K1 K1 C2 D2
A B key1 key2 C D indi
0 A0 B0 K0 K0 C3 D3 both
1 A0 B0 K0 K0 C1 D1 both
2 A1 B1 K0 K1 NaN NaN left_only
3 A2 B2 K1 K1 C2 D2 both
4 NaN NaN K2 K2 C4 D4 right_only

#以上是根据值合并。下面根据index合并df1 = pd.DataFrame({'A':['A0', 'A1', 'A2'],          'B':['B0', 'B1', 'B2']},          index=['index0', 'index1', 'index2'])df2 = pd.DataFrame({'A':['C3', 'C1', 'C2'],          'D':['D3', 'D1', 'D2']},          index=['index3', 'index1', 'index2'])print(df1); print()print(df2); print()res = pd.merge(df1, df2, left_index=True, right_index=True)print(res); print()res = pd.merge(df1, df2, left_index=True, right_index=True, how='outer', suffixes=['_b', '_g'])print(res); print()

A B
index0 A0 B0
index1 A1 B1
index2 A2 B2
A D
index3 C3 D3
index1 C1 D1
index2 C2 D2
A_x B A_y D
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
A_b B A_g D
index0 A0 B0 NaN NaN
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
index3 NaN NaN C3 D3

res = df1.join(df2, how='outer', lsuffix='_left', rsuffix='_right') #不用on默认用索引合并print(res);print()res = df1.join(df2, on='B', how='outer', lsuffix='_left', rsuffix='_right') #用on指定df1的某列和df2的索引合并print(res);print()

A_left B A_right D
index0 A0 B0 NaN NaN
index1 A1 B1 C1 D1
index2 A2 B2 C2 D2
index3 NaN NaN C3 D3
A_left B A_right D
index0 A0 B0 NaN NaN
index1 A1 B1 NaN NaN
index2 A2 B2 NaN NaN
index2 NaN index3 C3 D3
index2 NaN index1 C1 D1
index2 NaN index2 C2 D2

import numpy as npimport pandas as pdimport matplotlib.pyplot as plt #画图模块s = pd.Series(np.random.randn(1000), index=np.arange(1000))s = s.cumsum()#须在命令行执行, jupyter会报错#s.plot()#plt.show()df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])df = df.cumsum()print(df.head()); print() #head默认显示前5行#须在命令行执行, jupyter会报错#s.plot()#plt.show()#须在命令行执行, jupyter会报错#'bar', 'hist', 'box', 'kde', 'area', 'scatter', 'hexbin', 'pie'...#class_B = df.plot.scatter(x='A', y='B', color='DarkBlue', label='Class B') #画图,scatter<散点图>#df.plot.scatter(x='A', y='C', color='DarkRed', label='Class C', class_B=class_B)#plt.show()

A B C
0 -0.399363 -1.004210 0.641141
1 -1.970009 -0.608482 -0.758504
2 -3.081640 -0.617352 -1.143872
3 -2.174627 -1.383785 -1.011411
4 -1.415515 -1.892226 -2.511739

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python操作Excel表格技巧总结》、《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)