香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

tensorflow saver 保存和恢复指定 tensor的实例讲解


时间:2022-01-11 10:28 作者:admin


在实践中经常会遇到这样的情况:

1、用简单的模型预训练参数

2、把预训练的参数导入复杂的模型后训练复杂的模型

这时就产生一个问题:

如何加载预训练的参数。

下面就是我的总结。

为了方便说明,做一个假设:简单的模型只有一个卷基层,复杂模型有两个。

卷积层的实现代码如下:

import tensorflow as tf# PS:本篇的重担是saver,不过为了方便阅读还是说明下参数# 参数# name:创建卷基层的代码这么多,必须要函数化,而为了防止变量冲突就需要用tf.name_scope# input_data:输入数据# width, high:卷积小窗口的宽、高# deep_before, deep_after:卷积前后的神经元数量# stride:卷积小窗口的移动步长def make_conv(name, input_data, width, high, deep_before,deep_after, stride, padding_type='SAME'): global parameters with tf.name_scope(name) asscope:  weights =tf.Variable(tf.truncated_normal([width, high, deep_before, deep_after],   dtype=tf.float32,stddev=0.01), trainable=True, name='weights')  biases =tf.Variable(tf.constant(0.1, shape=[deep_after]), trainable=True, name='biases')  conv =tf.nn.conv2d(input_data, weights, [1, stride, stride, 1], padding=padding_type)  bias = tf.add(conv,biases)  bias = batch_norm(bias,deep_after, 1) # batch_norm是自己写的batchnorm函数  conv =tf.maximum(0.1*bias, bias)  return conv

简单的预训练模型就下面一句话

conv1 =make_conv('simple-conv1', images, 3, 3, 3, 32, 1)

复杂的模型是两个卷基层,如下:

conv1 = make_conv('complex-conv1',images, 3, 3, 3, 32, 1)pool1= make_max_pool('layer1-pool1', conv1, 2, 2)conv2= make_conv('complex-conv2', pool1, 3, 3, 32, 64, 1)

这时简简单单的在预训练模型中:

saver = tf.train.Saver()with tf.Session() as sess:saver.save(sess,'model.ckpt')

就不行了,因为:

1,如果你在预训练模型中使用下面的话打印所有tensor

all_v =tf.global_variables()for i in all_v: print i

会发现tensor的名字不是weights和biases,而是'simple-conv1/weights和'simple-conv1/biases,如下:

<tf.Variable'simple-conv1/weights:0' shape=(3, 3, 3, 32) dtype=float32_ref><tf.Variable'simple-conv1/biases:0' shape=(32,) dtype=float32_ref><tf.Variable 'simple-conv1/Variable:0' shape=(32,)dtype=float32_ref><tf.Variable 'simple-conv1/Variable_1:0' shape=(32,)dtype=float32_ref><tf.Variable 'simple-conv1/Variable_2:0' shape=(32,)dtype=float32_ref><tf.Variable 'simple-conv1/Variable_3:0' shape=(32,)dtype=float32_ref>

同理,在复杂模型中就是complex-conv1/weights和complex-conv1/biases,这是对不上号的。

2,预训练模型中只有1个卷积层,而复杂模型中有两个,而tensorflow默认会从模型文件('model.ckpt')中找所有的“可训练的”tensor,找不到会报错。

解决方法:

1,在预训练模型中定义全局变量

parm_dict={}

并在“return conv”上面添加下面两行

parm_dict['complex-conv1/weights']= weightsparm_dict['complex-conv1/']= biases

然后在定义saver时使用下面这句话:

saver= tf.train.Saver(parm_dict)

这样保存后的模型文件就对应到复杂模型上了。

2,在复杂模型中定义全局变量

parameters= []

并在“return conv”上面添加下面行

parameters+= [weights, biases]

然后判断如果是第二个卷积层就不更新parameters。

接着在定义saver时使用下面这句话:

saver= tf.train.Saver(parameters)

这样就可以告诉saver,只需要从模型文件中找weights和biases,而那些什么complex-conv1/Variable~ complex-conv1/Variable_3统统滚一边去(上面红色部分)。

最后使用下面的代码加载就可以了

with tf.Session() as sess: ckpt= tf.train.get_checkpoint_state('.') if ckpt and ckpt.model_checkpoint_path:  saver.restore(sess,ckpt.model_checkpoint_path) else:  print ' no saver.'  exit()     

以上这篇tensorflow saver 保存和恢复指定 tensor的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)