香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

在Python上基于Markov链生成伪随机文本的教程


时间:2021-11-09 10:32 作者:admin610456


首先看一下来自Wolfram的定义

马尔可夫链是随机变量{X_t}的集合(t贯穿0,1,...),给定当前的状态,未来与过去条件独立。

Wikipedia的定义更清楚一点儿

...马尔可夫链是具有马尔可夫性质的随机过程...[这意味着]状态改变是概率性的,未来的状态仅仅依赖当前的状态。

马尔可夫链具有多种用途,现在让我看一下如何用它生产看起来像模像样的胡言乱语。

算法如下,

    找一个作为语料库的文本,语料库用于选择接下来的转换。 从文本中两个连续的单词开始,最后的两个单词构成当前状态。 生成下一个单词的过程就是马尔可夫转换。为了生成下一个单词,首先查看语料库,查找这两个单词之后跟着的单词。从它们中随机选择一个。 重复2,直到生成的文本达到需要的大小。


代码如下

import random class Markov(object):   def __init__(self, open_file):  self.cache = {}  self.open_file = open_file  self.words = self.file_to_words()  self.word_size = len(self.words)  self.database()      def file_to_words(self):  self.open_file.seek(0)  data = self.open_file.read()  words = data.split()  return words      def triples(self):  """ Generates triples from the given data string. So if our string were    "What a lovely day", we'd generate (What, a, lovely) and then    (a, lovely, day).  """     if len(self.words) < 3:   return     for i in range(len(self.words) - 2):   yield (self.words[i], self.words[i+1], self.words[i+2])     def database(self):  for w1, w2, w3 in self.triples():   key = (w1, w2)   if key in self.cache:    self.cache[key].append(w3)   else:    self.cache[key] = [w3]      def generate_markov_text(self, size=25):  seed = random.randint(0, self.word_size-3)  seed_word, next_word = self.words[seed], self.words[seed+1]  w1, w2 = seed_word, next_word  gen_words = []  for i in xrange(size):   gen_words.append(w1)   w1, w2 = w2, random.choice(self.cache[(w1, w2)])  gen_words.append(w2)  return ' '.join(gen_words)

为了看到一个示例结果,我们从古腾堡计划中拿了沃德豪斯的《My man jeeves》作为文本,示例结果如下。

In [1]: file_ = open('/home/shabda/jeeves.txt') In [2]: import markovgen In [3]: markov = markovgen.Markov(file_) In [4]: markov.generate_markov_text()Out[4]: 'Can you put a few years of your twin-brother Alfred,who was apt to rally round a bit. I should strongly advocatethe blue with milk'

[如果想执行这个例子,请下载jeeves.txt和markovgen.py
马尔可夫算法怎样呢?

最后两个单词是当前状态。 接下来的单词仅仅依赖最后两个单词,也就是当前状态。 接下来的单词是从语料库的统计模型中随机选择的。

这是一个示例文本。

复制代码 代码如下:"The quick brown fox jumps over the brown fox who is slow jumps over the brown fox who is dead."

这个文本对应的语料库像这样,

{('The', 'quick'): ['brown'], ('brown', 'fox'): ['jumps', 'who', 'who'], ('fox', 'jumps'): ['over'], ('fox', 'who'): ['is', 'is'], ('is', 'slow'): ['jumps'], ('jumps', 'over'): ['the', 'the'], ('over', 'the'): ['brown', 'brown'], ('quick', 'brown'): ['fox'], ('slow', 'jumps'): ['over'], ('the', 'brown'): ['fox', 'fox'], ('who', 'is'): ['slow', 'dead.']}

现在如果我们从"brown fox"开始,接下来的单词可以是"jumps"或者"who"。如果我们选择"jumps",然后当前的状态就变成了"fox jumps",再接下的单词就是"over",之后依此类推。

提示

我们选择的文本越大,每次转换的选择更多,生成的文本更好看。 状态可以设置为依赖一个单词、两个单词或者任意数量的单词。随着每个状态的单词数的增加,生成的文本更不随机。 不要去掉标点符号等。它们会使语料库更具代表性,随机文本更好看。

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)