香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > python >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

python k-近邻算法实例分享


时间:2021-02-07 11:23 作者:admin


简单说明

这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。

简称kNN。

已知:训练集,以及每个训练集的标签。

接下来:和训练集中的数据对比,计算最相似的k个距离。选择相似数据中最多的那个分类。作为新数据的分类。

python/' target='_blank'>python实例

复制代码 代码如下:
# -*- coding: cp936 -*-

#win系统中应用cp936编码,linux中最好还是utf-8比较好。
from numpy import *#引入科学计算包
import operator #经典Python函数库。运算符模块。

#创建数据集
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels

#算法核心
#inX:用于分类的输入向量。即将对其进行分类。
#dataSet:训练样本集
#labels:标签向量
def classfy0(inX,dataSet,labels,k):
#距离计算
dataSetSize =dataSet.shape[0]#得到数组的行数。即知道有几个训练数据
diffMat =tile(inX,(dataSetSize,1))-dataSet#tile:numpy中的函数。tile将原来的一个数组,扩充成了4个一样的数组。diffMat得到了目标与训练数值之间的差值。
sqDiffMat =diffMat**2#各个元素分别平方
sqDistances =sqDiffMat.sum(axis=1)#对应列相乘,即得到了每一个距离的平方
distances =sqDistances**0.5#开方,得到距离。
sortedDistIndicies=distances.argsort()#升序排列
#选择距离最小的k个点。
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
#排序
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]

意外收获

把自己写的模块加入到python默认就有的搜索路径:在python/lib/-packages目录下建立一个 xxx.pth的文件,写入自己写的模块所在的路径即可

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)