香港云主机最佳企业级服务商!

ADSL拨号VPS包含了中国大陆(联通,移动,电信,)

中国香港,国外拨号VPS。

当前位置:云主机 > MYSQL >

电信ADSL拨号VPS
联通ADSL拨号VPS
移动ADSL拨号VPS

使用keras做SQL注入攻击的判断(实例讲解)


时间:2020-11-03 13:34 作者:admin


本文是通过深度学习框架keras来做SQL注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化、dropout层(随着深度学习出现的层)。

基本思路就是喂入一堆数据(INT型)、通过神经网络计算(正向、反向)、SOFTMAX多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本;1-包含SQL注入的文本

文件分割上,做成了4个python/' target='_blank'>python文件:

util类,用来将char转换成int(NN要的都是数字类型的,其他任何类型都要转换成int/float这些才能喂入,又称为feed)

data类,用来获取训练数据,验证数据的类,由于这里的训练是有监督训练,因此此时需要返回的是个元组(x, y)

trainer类,keras的网络模型建模在这里,包括损失函数、训练epoch次数等

predict类,获取几个测试数据,看看效果的预测类

先放trainer类代码,网络定义在这里,最重要的一个,和数据格式一样重要(呵呵,数据格式可是非常重要的,在这种程序中)

import SQL注入Dataimport numpy as npimport kerasfrom keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activationfrom keras.layers.normalization import BatchNormalizationfrom keras.optimizers import SGD x, y=SQL注入Data.loadSQLInjectData()availableVectorSize=15x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)y=keras.utils.to_categorical(y, num_classes=2)  model = Sequential()model.add(Dense(64, activation='relu', input_dim=availableVectorSize))model.add(BatchNormalization())model.add(Dropout(0.3))model.add(Dense(64, activation='relu'))model.add(Dropout(0.3))model.add(Dense(2, activation='softmax')) sgd = SGD(lr=0.001, momentum=0.9)model.compile(loss='mse',  optimizer=sgd,  metrics=['accuracy']) history=model.fit(x, y,epochs=500,batch_size=16) model.save('E:\\sql_checker\\models\\trained_models.h5')print("DONE, model saved in path-->E:\\sql_checker\\models\\trained_models.h5") import matplotlib.pyplot as pltplt.plot(history.history['loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()

先来解释上面这段plt的代码,因为最容易解释,这段代码是用来把每次epoch的训练的损失loss value用折线图表示出来:

  

何为训练?何为损失loss value?

训练的目的是为了想让网络最终计算出来的分类数据和我们给出的y一致,那不一致怎么算?不一致就是有损失,也就是说训练的目的是要一致,也就是要损失最小化

怎么让损失最小化?梯度下降,这里用的是SGD优化算法:

from keras.optimizers import SGD sgd = SGD(lr=0.001, momentum=0.9)model.compile(loss='mse',  optimizer=sgd,  metrics=['accuracy'])

上面这段代码的loss='mse'就是定义了用那种损失函数,还有好几种损失函数,大家自己参考啊。

optimizer=sgd就是优化算法用哪个了,不同的optimizer有不同的参数

由于此处用的是全连接NN,因此是需要固定的输入size的,这个函数就是用来固定(不够会补0) 特征向量size的:

x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)

再来看看最终的分类输出,是one hot的,这个one hot大家自己查查,很容易的定义,就是比较浪费空间,分类间没有关联性,不过用在这里很方便

y=keras.utils.to_categorical(y, num_classes=2)

然后再说说预测部分代码:

import SQL注入Dataimport Converter  import numpy as npimport kerasfrom keras.models import load_model print("predict....") x=SQL注入Data.loadTestSQLInjectData()x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15) model=load_model('E:\\sql_checker\\models\\trained_models.h5')result=model.predict_classes(x, batch_size=len(x))result=Converter.convert2label(result)print(result)  print("DONE")

这部分代码很容易理解,并且连y都没有  

  

好了,似乎有那么点意思了吧。

下面把另外几个工具类、数据类代码放出来:

def toints(sentence): base=ord('0') ary=[] for c in sentence:  ary.append(ord(c)-base) return ary  def convert2label(vector): string_array=[] for v in vector:  if v==1:   string_array.append('SQL注入')  else:   string_array.append('正常文本') return string_array
import Converterimport numpy as np def loadSQLInjectData(): x=[] x.append(Converter.toints("100")) x.append(Converter.toints("150")) x.append(Converter.toints("1")) x.append(Converter.toints("3")) x.append(Converter.toints("19")) x.append(Converter.toints("37")) x.append(Converter.toints("1'--")) x.append(Converter.toints("1' or 1=1;--")) x.append(Converter.toints("updatable")) x.append(Converter.toints("update tbl")) x.append(Converter.toints("update someb")) x.append(Converter.toints("update")) x.append(Converter.toints("updat")) x.append(Converter.toints("update a")) x.append(Converter.toints("'--")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("aupdatable")) x.append(Converter.toints("hello world"))  y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]]  x=np.asarray(x) y=np.asarray(y)  return x, y  def loadTestSQLInjectData():  x=[] x.append(Converter.toints("some value")) x.append(Converter.toints("-1")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("noupdate")) x.append(Converter.toints("update ")) x.append(Converter.toints("update")) x.append(Converter.toints("update z")) x=np.asarray(x) return x

以上这篇使用keras做SQL注入攻击的判断(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

(责任编辑:admin)






帮助中心
会员注册
找回密码
新闻中心
快捷通道
域名登录面板
虚机登录面板
云主机登录面板
关于我们
关于我们
联系我们
联系方式

售前咨询:17830004266(重庆移动)

企业QQ:383546523

《中华人民共和国工业和信息化部》 编号:ICP备00012341号

Copyright © 2002 -2018 香港云主机 版权所有
声明:香港云主机品牌标志、品牌吉祥物均已注册商标,版权所有,窃用必究

云官方微信

在线客服

  • 企业QQ: 点击这里给我发消息
  • 技术支持:383546523

  • 公司总台电话:17830004266(重庆移动)
  • 售前咨询热线:17830004266(重庆移动)